Purification of GST-fusion proteins produced in the BL21(DE3) *E. coli* strain. (also check purification of His-tag protei)

<u>Production of GST-fusion proteins</u>

- 1. BL21(DE3) cells transformed with a pGEX derivative.
 - *No heat shock when transformed.
 - *Do not leave colonies at 4°C. Use fresh colonies.
- 2. Inoculate a single colony in 7.5/2.5 ml LB+amp, culture @25°C O/N
- 3. Dilute in 750ml/250ml (**s ml**) LB+amp
- 4. Cultivate at 30°C until an OD660 of approx. 0.8 (you can start induction at lower OD, at least 0.4)
 - *Take 1ml culture for an SDS-PAGE sample (**pre-induction sample**). (Screw top tube)
 - *Spin down cells. Remove supernatant.
 - *Add 1xSDS-PAGE loading buffer (OD x 300 ul) to the pellet.
 - *Suspend cells by vortex and boil for 2min
 - *Vortex again briefly and boil another 3min
 - *Chill on ice, freeze at -20°C
- 5. Add IPTG to the culture (final 0.67 mM IPTG) $(0.1 \sim 1.0 \text{ mM})$ depending on you proteins)
- 6. Cultivate @30°C for 4h
 - *Measure OD, and prepare SDS-PAGE sample as described below

(post-induction sample)

- *Take 1ml culture for SDS-PAGE sample. (Screw top tube)
- *Spin down cells. Remove supernatant.
- *Add 1xSDS-PAGE loading buffer (OD x 300 ul = t) to the pellet.
- *Suspend cells by vortex and boil for 2min
- *Vortex again briefly and boil another 3min
- *Chill on ice, freeze at -20°C
- 7. Collect cells in 500 ml centrifuge tube (**NOT be filled to 75% of total capacity**)

(4,200 rpm/up to 4,800g, 30min, 4°C, 375 ml twice)

- 8. Suspend cells in 40ml of TBS and transfer into the 50ml conical tube.
- 9. Collect cells (3,000 rpm, 20min, 4°C)
- 10. Wash cells with TBS (suspend cells in 40 ml TBS again, collect cells, discard TBS)
- 10. Store pellet @-80°C

Purification of GST-fusion protein

All the procedures must be performed at 4°C or on ice unless otherwise specified

- 1. Add 10/5 ml (w ml) of ice-cold lysis buffer to cell pellet (4°C)
- 2. Sonicate cell (4°C)

With Branson Digital Sonifier: amplitude 20%, processing time 30 sec, ON time 1 sec, OFF time 3 sec. Need to repeat $3 \sim 5$ times.

Keep the tube on ice while sonicating.

- *Cell suspension changes its color from white to brown
- *Avoid foaming. Put down the sonicator tip well below the buffer surface during sonication.
- 3. Transfer cell lysase to a 30ml centrifuge tube (4°C)
- 4. Clarify lysate by centrifugation (JA-17, 15krpm, 30min, 4°C) (use adaptor if necessary)
- 5. During centrifugation, pre-wash glutathione sepharose beads
 - a. Take 400/200 ul (50% slurry, 200/100 ul bed volume) of beads in 15 ml tube
 - b. Spin down to collect beads, 1000 rpm, 1sec, 4°C (remove supernatant)
 - c. Add 1 ml of lysis buffer, mix gently/thoroughly

d. repeat steps: b, c, b, c and b

- 6. After centrifugation, save (w x 1/s) ml of supernatant for SDS-PAGE sample (sup sample, 4°C)
- 7. Filtrate supernatant though 0.45um filter into a 15ml conical tube containing pre-washed glutathione sepharose beads (50% slurry in lysis buffer) (4°C) (**Do not make foam by pushing syringe to the very end**): Do not vortex. Do not pipet up and down. Mix by inversion.
- 8. Rotate for 1h at 4°C
- 9. During the step 7:
 - *Suspend pellet in 10/5 ml of lysis buffer by sonication. Save $(\mathbf{w} \times \mathbf{1/s} = \mathbf{u})$ ml for SDS-PAGE sample (pellet sample, $\mathbf{4}^{\circ}\mathbf{C}$)
 - *Prepare sup & pellet samples: sample must contains same concentration of proteins as pre- and post-induction sample
 - *Add (u x 0.5) ml of 3XSDS-PAGE loading buffer.
 - *Add (t-1.5u) ul of 1XSDS-PAGE loading buffer (total t ul)
 - *Suspend by vortex and boil for 2min
 - *Vortex again briefly and boil another 3min
- 10. Wash beads with lysis buffer (5 ml x 3 times) (4°C) (brief centrifuge at 1,000 rpm for 1sec)
- 11. Incubate beads in 10 ml of DnaK removing buffer at 30°C for 30 min
- 12. Go to Step 13 for Option 1. OR go to Step 15 for Option 2

For "Option 1: Elution of GST fusion"

- 13. Wash beads with lysis buffer (5 ml x 2 times) (4°C) (brief centrifuge at 1,000 rpm for 1sec)
- 14. Store beads as 50% slurry in lysis buffer, and follow the protocol for "Option 1"
 - *Gently suspend and take 10 ul for SDS-PAGE sample (beads sample)
 - *Add 50ul of 1XSDS-PAGE loading buffer
 - *Suspend by vortex and boil for 2min
 - *Vortex again briefly and boil another 3min

For "Option 2: Thrombin digestion"

- 15. Wash with cleavage buffer (5ml x 3 times) (4°C)
- 16. Store beads as 50% slurry in cleavage buffer, and follow the protocol for "Option 1"
 - *Gently suspend and take 10 ul for SDS-PAGE sample (beads sample)
 - *Add 50ul of 1XSDS-PAGE loading buffer
 - *Suspend by vortex and boil for 2min
 - *Vortex again briefly and boil another 3min

option 1* Elution of GST fusion

- 1. Spin down briefly to collect beads (4°C)
- 2. Remove supernatant
- 3. To the beads, add 200/100 ul of lysis buffer containing 10 mM reduced glutathione in (RT)
- 4. Vortex briefly and wait 1min (RT)
- 5. Centrifuge to collect beads (RT)
- 6. Save supernatant in a new tube (4°C)
- 7. Repeat 2-6 twice; prepare an SDS-PAGE sample for each elution
- 8. Pool all supernatants (4°C)
- 9. Pass through mini empty column (4°C)

10. Store protein solution at 4°C or -80°C

option 2* Thrombin digestion

- 1. Centrifuge briefly, and discard supernatant
- 2. Add 1ml of cleavage buffer (4°C)
 - *For a test sample, add 300 ul of cleavage buffer to beads and transfer to a 1.5ml tube
- 3. Add thrombin $(1/10 \text{ volume}) (4^{\circ}\text{C})$
- 4. Incubate (shake) for 1.5h at 30°C
- 5. Pass through mini empty column (RT)
 - *For a test sample, centrifuge briefly. Supernatant is the protein solution
- 6. Store protein solution at 4°C or -80°C (snap freeze in liquid nitrogen)
 - *Prepare SDS-PAGE sample using 10 ul of the protein + 50 ul of 1xSDS-PAGE *loading buffer.

Reagents

Lysis buffer (prepare the amount you need: pAPMSF is expensive)

	Stock soln	For 100ml	
50mM Tris-HCl pH7.5*	1M	5ml	
150mM NaCl	5M	3ml	
10% Glycerol	60%	16.7ml	
0.25% Tween 20	40%	0.625ml	
1mM DTT**	1M	0.1ml	
0.2mM pAPMSF**	0.2M	0.1ml	
Total		100ml	

^{*}or 40mM HEPES-NaOH pH7.5

DnaK removing buffer

Lysis buffer + 2.5mM MgCl₂ and 2mM ATP

Cleavage buffer (prepare the amount you need)

	Stock soln	For 100ml		
25mM Tris-HCl pH7.5	1M	2.5ml		
150mM NaCl	5M	3ml		
10% Glycerol	60%	16.7ml		
2.5mM CaCl ₂	1M	0.25ml		
1mM DTT**	1M	0.1ml		
Total		100ml		

^{**}add before use

Glutathione Sepharose 4B beads in 15ml tube

Wash in 5ml lysis buffer 3times

Thrombin stock soln. (10x)

5mg/ml thrombin (Roche)

(5 units/ml)

^{**}add before use

^{***} add 2.5mM MgCl₂ for G proteins

^{***} add 2.5mM MgCl₂ for G proteins

0.2M Reduced Glutathione (-20°C)